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Abstract 
 
 

Managing existing water resources has become critically important as overuse, in 
conjunction with extreme droughts, has placed aquifers in jeopardy. Our goal in this 
work is to develop a flexible modeling and optimization framework to aid farmers in 
selecting crop portfolios which offer the best outcomes, under sustainable water 
usage limitations, over specified time frames. The flexibility is emphasized through 
incorporation of multi-objective algorithms, allowing farmers to define “best" 
individually. We then demonstrate the modeling and optimization approach on a 
three-crop farm over a two year planning horizon and with a case study, the Pajaro 
Valley of California, known for berry farming. We consider a ten year planning 
horizon under the presence of increasing water and sale prices to demonstrate how 
the modeling tool can be used for predictive purposes. 
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1.  Introduction 
 

Managing existing water resources has become critically important as overuse, 
in conjunction with extreme droughts, has placed aquifers in critical conditions of 
overdraft.  
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Recent news articles even point to assessments that the High Plains Aquifer, 

located beneath agriculture intensive states Kansas and Nebraska, is in danger of 
being completely depleted [Error! Reference source not found.]. Farmers in these 
regions have agreed to reduce their irrigation needs by 20% [Error! Reference source 
not found.], but the overall short- and long-term impacts on their crop management 
strategies has yet to be determined. Water shortages in other areas of the country also 
plague farmers [Error! Reference source not found., Error! Reference source not found., 
Error! Reference source not found.]. 

 
Local water management agencies have placed withdrawal restrictions on 

aquifers to allow them to recover[Error! Reference source not found.]. These 
restrictions have a significant impact on regional farmers, as water use graphics 
indicate farmers use a disproportionate amount of groundwater to irrigate their crops 
[Error! Reference source not found., Error! Reference source not found.]. These 
shortages are not likely to ease soon, meaning farmers must develop strategies for 
operating under these guidelines. 

 
Our goal in this work is to develop a flexible modeling and optimization 

framework to aid farmers in selecting crop portfolios which offer the best outcomes, 
under sustainable water usage limitations, over specified time frames. The flexibility is 
emphasized through incorporation of multi-objective algorithms, allowing farmers to 
define “best” individually. The three objectives we consider are to minimize water 
usage, maximize profit, and minimize deviation from the current demand, but the 
framework allows for any metric of farm performance related to the underlying 
model. These are often competing objectives; trade-off curves allow decision makers, 
i.e. farmers, a chance to consider multiple scenarios. Planting decisions are made by 
tracking the availability of farm plots and allowing an optimization algorithm to select 
the crops over a specified time horizon. Although detailed crop information is 
required, the modeling framework can be adapted to any set of crops with varying 
growing seasons. Crop planting and harvesting schedules are enforced through a set 
of linear constraints.  

 
 

 

 



Bokhiria, Flower & Jenkins                                                                                                                  211 
 
 

 

This paper is outlined as follows. In Section  

2, we describe the process by which we formulate the problem. We enumerate 
and explain the different steps we believe are imperative in both capturing the 
variables under consideration by a farmer and improving the performance of the 
optimization algorithm.  

 
In Section  

3, we demonstrate the idea on an example problem using three different crops 
with properties leading to competing multi-objectives. In Section 4, we consider a 
case study on the Pajaro Valley of California.  

This region is known for water intensive berry farming and has agencies 
actively seeking sustainable agricultural practices. The crops under consideration, 
lettuce, strawberries, raspberries, and blackberries, have varied growing seasons, with 
raspberries in particular having dynamic model parameters, demonstrating the 
adaptability of our approach. We consider a 10-year planning horizon under the 
presence of increasing water and sales prices, to show the predictive capability of the 
modeling tool. We end with conclusions and directions for future work. 
 
2. Modeling Framework 

 
Ultimately, our deliverable for this project is a software tool providing useful 

analysis for a farmer. Throughout our development, we have considered how a 
generic user (farmer) might best adapt our framework for their own needs. In this 
section, we describe our general strategy for simulating the operation of a farm over a 
specified time frame and offer insight into our modeling choices.  

 
The model is established by viewing the optimizer as a virtual farmer. This 

viewpoint guides the definition of the decision variables, as the optimization tool 
needs to be able to make decisions on the same time frame as the farmer. Thus, as an 
initial step, the planting schedule for the crops under consideration must be 
determined. The information should include the number of crops for which decisions 
should be made, along with the planting and harvesting schedules for the crops. We 
generically denote this as a preprocessing step. 

 



212                                        Journal of Agriculture and Environmental Sciences, Vol. 3(1), March 2014             
 

 
Planting decisions are dynamic and depend on the calendar month and the 

growing seasons of the different crops. The preprocessing step aims to identify the 
minimum number of decision variables required for simulation of a multi-year 
planning window. Minimizing the number of decision variables improves the 
performance of the optimization algorithm, as the size of the search space is 
significantly reduced. We choose the base number of decision variables on the 
planning horizon for the farmer and on the initial farm state. The planning horizon 
determines the number of times a planting decision must be made, while the initial 
farm state determines the types of crops available for planting.  

 
We assume the crop portfolio available to the farmer will not deviate 

significantly from the existing crop state. 
The optimization problem, acting as the farmer, needs to allow for decisions 

based on combinations of demand, profit, and water usage considerations. The 
problem must also consider constraints, possibly dynamic, to enforce planting and 
harvesting schedules. Our modeling strategy strongly connects the crop selection and 
optimization formulation through a multistep process requiring the preprocessing 
step, the constraints formulation, an objective function formulation, an optimization 
step, and an analysis, or postprocessing, step. A flowchart depicting the strategy used 
to construct the problem is given in Figure 1. 

 

 
 

Figure 1: Flowchart outlining sequencing of process. Note the components of the 
problem formulation can be performed simultaneously. 
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2.1  Preprocessing 

 
The preprocessing step is an analysis of the growing and harvesting schedules 

for the crops under consideration through the outline of a calendar that tracks when 
land becomes available and what is being harvested. This step leads to the 
determination of the decision variables for the optimization approach as well as the 
constraints which enforce the details of the growing season. The goals of this step are 
to minimize the number of decision variables (thereby reducing the size of the search 
space) and to account for the variety of planting scenarios possible under a given crop 
portfolio. 

 
Let Ncrop  be the number of different crops under consideration. Each time a 

crop is harvested, the optimizer (i.e., the farmer) is allowed to plant something new. 
As part of the preprocessing analysis, we must determine, for each crop, the number 
of opportunities it could be planted, Ni . We then incorporate a decision variable to 
the planning model for that crop for each planting opportunity. In our case, we define 
as our decision variable the percentage of land allocated to crop i at each of the Ni 

planting opportunities. The total number of decision variables is Ni
i=1

Ncrop

å  and our 

vector of decision variables is denoted as  

 x = x1
1, x2

1,..., xN1

1 , x1
2, x2

2,..., xN2

2 ,..., x1
Ncrop , x2

Ncrop ,..., xNNcrop

Ncrop( ) (1) 

 
We also recommend the creation of a planning calendar during the 

preprocessing step for the purpose of visualizing decision-making and harvesting time 
points. This provides an overview of possible land allocation and guides the 
constraint formulations. We demonstrate this on a three-crop farm in the next 
section. Note this model formulation can account for multiyear crops, i.e., crops that 
remain in the ground during a planting opportunity while new crops of the same type 
are planted. In those cases, values for constraints or objective functions must be 
carefully computed, as the parameter values for the crop may change depending on 
the year.  
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2.2  Constraint Formulation 

 
At each decision point, a linear inequality constraint must be enforced to 

ensure the total percentage of farm allocation is at most 100%. Land may be left 
fallow, which is beneficial in scenarios involving water restrictions or soil treatments 
used to increase nutrients (and thereby yields) in subsequent planting periods. 
Although we do not address that here, the incorporation of time dependent crop 
parameters could easily account for this. 

 
Constraints are also used to model the planting and harvesting schedule using 

specific model parameters for each crop. For each crop, it is necessary to know the 
month they are planted and the number of months they remain in the ground.  

For example, suppose x1
1  percent of the farm is allocated to crop 1 at the first 

planting opportunity and more land becomes available for crop 1 at the next planting 
opportunity. More of crop 1 can be planted, even though the existing crop has not 
been harvested. We then simply enforce x2

1 ³ x1
1. The preprocessing step will have 

identified harvesting times for crops; thus, as crops are harvested, similar constraints 
can be enforced at each planting time if necessary. This provides flexibility in the 
modeling in the sense that crops with varying growing seasons, in terms of what 
month they are planted and how long they remain in the ground, can easily be 
incorporated. The dynamic planning, tied to the calendar year, is necessary to account 
for realistic decision-making. We illustrate this in the Case Study in Section  

3 below. 
 
2.3  Objective Functions 

 
The objective functions must incorporate the information a farmer uses to 

make crop planning decisions. Examples of such information include profitability, 
limited changes in crop portfolios from year to year, meeting consumer demand on an 
annual basis, and minimizing the use of costly resources. The objective function can 
be defined as a single target, or it can include multiple, often competing, targets. Note 
that minimizing the use of costly resources does not necessarily increase profitability. 
Many crops have minimum resource requirements for successful harvest, so limiting 
the use of these resources often competes with profitability objectives.  
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We list the model parameters used in this work for each crop in Table 1. 
These parameters are used to describe the revenue generated by the crop, the 
deviation from the current demand, and the operational costs, although these 
definitions are adaptable to a variety of agricultural goals. 
 
 
 
 

Cy
i  yield from one harvest (boxes/acre) 

CW
i  water usage (acre-ft/acre) 

CP
i  sales price ($/box) 

Cd
i  demand (% crop/year) 

Cc
i  operational planting cost ($/acre) 

 
Table 1: Model parameters for crop type (i =1,2,..., Ncrop )  

Profit models can be as complex or as simple as needed once the farming 
model is in place. That is, once the decision variables are defined and the constraints 
are developed to describe the planting and harvesting schedules, a variety of metrics 
of interest to a farmer can be analyzed for a suite of feasible crop portfolios. If, for 
instance, Ai  denotes the number of acres from crop i, a simple representation of 
profit could be  

 )(Profit i
C

i
WW

i
P

i
y

ii CCPCCA   (2) 

where PW  ($/acre-feet) is the current price of water. Similarly, the amount of water 
used over the entire growing season can also be calculated for crop i using  

 
 .)(Water ii

W
i AC  (3) 

 
To account for demand, we consider minimizing the deviation from a demand 

vector D = (d1, d 2,..., d Ncrop )  containing the annual percentages of land allocated to 
each crop. Mathematically, this could be achieved using several metrics, including the 
absolute deviation or the maximum deviation. We use the L2-norm of the deviation 
for its smoothness properties. Although these are (mathematically) simple objective 
functions, we reiterate that the modeling framework allows the user to incorporate 
any agricultural metric of interest.  
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2.4  Optimization 

 
The analysis of competing goals requires trade-off curves to provide 

information required for sound decision making. As the mathematical modeling 
described above was implemented in MATLAB, we determined the trade-off curves 
using their multi-objective genetic algorithm. A genetic algorithm is a gradient-free, 
global-search optimization algorithm.  

A gradient-free algorithm was chosen to allow a user the ability to inorporate 
more sophisticated, mathematically challenging metrics without having to reconsider 
the optimization algorithm. Our profit and water objectives for this work are linear, 
and the demand-based objective is quadratic. However, the genetic algorithm can 
utilize any form of objective function, since it is designed to work only with function 
values and not explicitly with the function. Related works which consider 
multiobjective linear programming in the context of crop rotation and environmental 
farm planning include works by El-Nazer et al.[Error! Reference source not found.], 
Beneke et al.[Error! Reference source not found.], Sahoo et al.[Error! Reference source 
not found.], and Annetts et al.[Error! Reference source not found.].  

 
Genetic algorithms (GAs) are part of a larger class of evolutionary algorithms 

and are classified as population based, global search heuristic methods [Error! 
Reference source not found.]. Genetic algorithms are based on biological processes 
such as survival of the fittest, natural selection, inheritance, mutation, and 
reproduction. Design points are coded as “individuals" or “chromosomes", typically 
as binary strings, in a population. Through the above biological processes, the 
population evolves through a user specified number of generations towards a smaller 
fitness value. We can define the following simple GA below;  

 
• Require Population size np , Number of Generations ng  

• Generate initial population, determine fitness, and rank : P1 = p1,..., pnp
 

• For k =1,...,ng  

1. Pk+1 =select Pk( ) 
2. Pk+1 = crossover Pk+1( ) 
3. Pk+1 =mutate Pk+1( ) 
4. Determine fitness for Pk+1 
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During the selection phase, better points with smaller function values are 
arranged randomly to form a mating pool on which further operations are performed. 
Crossover attempts to exchange information between two design points to produce a 
new point that preserves the best features of both ‘parent points’. Mutation is used to 
prevent the algorithm from terminating prematurely to a suboptimal point and is used 
as a means to explore the design space. Termination of the algorithm is based on a 
prescribed number of generations or when the highest ranked individual’s fitness has 
reached a plateau. Genetic algorithms are often criticized for their computational 
complexity and dependence on optimization parameter settings, which are not known 
a priori. However, if the user is willing to exhaust a large number of function 
evaluations, the GA can help gain insight into the design space and locate initial 
points for fast, local single search methods. When analyzing several metrics, one 
single solution likely doesn’t exist and it is more meaningful to consider trade-offs. A 
multi-objective GA, which we use here, evolves to generate a set of Pareto optimal 
solutions. In this set of points, a solution is considered non-dominated, and a member 
of the Pareto curve, if improving one objective function results in degrading another.  
 
3. Three Crop Farm Example 

 
We proceed by describing the modeling and optimization formulations on a 

generic farming scenario. For this demonstration, we consider three crops, A,B, and 
C, over a two year time frame. We let crops A and B have a four month growing 
season and crop C have an eight month growing season. We assume any of these 
crops can be planted in any month.  

 
The preprocessing step requires we chart the decision points for the farmer 

over the growing period. Recall decision points occur when land becomes available, 
meaning the farmer must make an allocation decision for the available plot. For 
simplicity, we assume we begin with an open farm; thus, initially we can plant 
x = (x1

A, x1
B, x1

C ) where the superscript identifies the crop and the subscript indicates 
the cardinality of the planting decision. Land next becomes available in four months, 
at which point any three of these can be planted again. Keep in mind, however, the 
acreage initially dedicated to crop C will still be occupied, leading to a constraint. The 
preprocessing step ultimately leads to the planting opportunities shown in Table 2, 
yielding 18 decision variables.  
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We also demonstrate in Table 2 the use of the decision variables, which are 

the total percentages of the farm allocated to a given crop, in calculating quantities for 
harvested and planted crops.  

 

 
 

Table 2: Example planting schedule 
 
 
 

Year 1    
  4Month 
Period 

1 2 3 

 Crop A x1
A  x2

A  x3
A  

Crop B x1
B  x2

B  x3
B  

Crop C x1
C  x2

C  x3
C  

Harvested  x1
A, x1

B  x2
A, x2

B, x1
C  

 
Planted 

 x2
A, x2

B  x3
A, x3

B  

  x2
C - x1

C  x3
C -(x2

C - x1
C )  

 Year 2    
  4 Month 
Period 

4 5 6 

 Crop A x4
A  x5

A  x6
A  

Crop B x4
B  x5

B  x6
B  

Crop C x4
C  x5

C  x6
C  

 
Harvested 

x3
A, x3

B  , x4
A, x4

B  x
A
4 ,x

B
4, 

 x2
C - x1

C  x3
C -(x2

C - x1
C )  x4

C -(x3
C -(x2

C - x1
C ))

  
 
Planted 

x4
A, x4

B  x5
A, x5

B  x6
A, x6

B  

 ))(( 1234
CCCC xxxx   x5

C -(x4
C -...

(x3
C -(x2

C - x1
C )))

 
x6

C -(x5
C -... 

))))(

...((

12

34
CC

CC

xx
xx




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The definition of the decision variables xi
A, xi

B, xi
C  (i=1,…,6) also means we 

must require, for each planting period,  
 
 xi

A + xi
B + xi

C £100  (4) 
 
Additional constraints are used to enforce harvesting schedules. Note that at 

period 2, since the amount of crop C that was initially planted in still in the ground, 
x2

C ³ x1
C . At period 3, the amount of crop C planted in period 1 will be harvested, 

leaving x2
C - x1

C  as the percent of acreage dedicated to crop C prior to any planting in 
period 3. As ݔଷ஼ represents the percent of acreage dedicated to crop C in period 3, we 
require x3

C ³ x2
C - x1

C . As crop C is the only crop that can remain in the ground over 
successive planting period, we have the following five constraints associated with crop 
C:  

 

x2
C ³ x1

C

x3
C ³ x2

C - x1
C

x4
C ³ x3

C -(x2
C - x1

C )
x5

C ³ x4
C -(x3

C -(x2
C - x1

C ))

 (5) 

 
We will assume the three crops have varying properties to demonstrate the 

trade-off analysis for decision making. We will consider cropA to be high in demand 
and profitable, but water intensive. Crop Cwill have the lowest demand and lowest 
profit, but use the least amount of water. Crop Bwill be in the middle for all three  
properties. The model parameters describing the attributes are shown in Table 3. 
 

 
Parameters A B C 
Water Usage(Wi) 3 2 1 
acre-ft/acre/year    
Yield(Yi) 1000 1000 4000 
“boxes"/acre    
Sales Price(Pi) $4.00 $3.00 $2.00 
Box    
 

Table 3: Model parameters for simplified three crop model.  
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Water usage is a straight forward calculation based on crops currently in the 

ground. We adjust the annual water requirement appropriately, as our decision 
variables represent the percentage of crops over a 4 month time step. For crop A, we 
have  

 

 



6

1

3/)(Water
i

A
W

AA CA  (6) 

 
where AA  denotes the total acreage of crop A  over the two years. We scale the price 
of water by 1/3 as the price is quoted on an annual basis. We have similar 
computations for water prices for crops B and C. 

 
For this example, we consider a simple profit model which is dynamically 

updated when crops are harvested. To compute the profit for crop A, we note it is 
harvested every period, giving  
 

 Profit A = (Cy
ACP

A -PWCW
A / 3)Ai

A

i=1

6

å  (7) 

 
We would have a similar profit model for crop B. However, for crop C, we 

must account for what is being harvested since plantings may overlap.  
 
For this two year model, this gives a profit calculation for crop Cas 

.
))))]((((

))((()((

()[(Profit

2year in  harvested

12345

1234123

1year in  harvested

12

  



CCCCC

CCCCCCC

CCC
WW

C
P

C
P

C

xxxxx
xxxxxxx

xxCPCC







 (8) 

 
This information can be extracted from the preprocessing step (see Table 2) 

and simplified prior to implementation. The entire expression was shown here to 
demonstrate the concept. 
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Our last objective accounts for the current demand for each crop. We assume 
to meet the current demand, this farm typically allocates 50% of its acreage to crop A, 
35% to crop B, and 15% to crop C. For this example, we calculated the average yield 
of each crop per year and minimized the ܮଶ-norm of the deviation from the demand 
for both years. For year one, if Y1

i  is the average yield of crop i, we measure the 
deviation from demand can be measured as  

 

 Demand1 = (Y1
A -50)2 +(Y1

B -35)2 +(Y1
C -15)2 .  (9) 

3.1  Numerical Results 
 
We ran the multi-objective genetic algorithm from the MATLAB Global 

Optimization Toolbox with the default algorithmic parameters, except we seeded the 
initial population. The GA typical starts with a random population of design points, 
which in this case led to poor performance, often times failing to find feasible designs 
at all. In practice, it is common to use expert knowledge to provide reasonable initial 
iterates for the optimization algorithm. Thus, we seeded the initial population of the 
GA with five farm scenarios that satisfied the linear constraint that the total acreage 
had to be at most 100%. These can be found in Table 4 below. Each row is the 
percentage of each crop which was set to be uniform over the entire planting horizon. 
The GA has random aspects to its search algorithm and thus can give different results 
for each optimization run. We performed multiple optimizations and observed the 
Pareto fronts had similar shapes.  

 
We show some of the representative trade-off curves in Figures 2 - 4. Here, 

each star in the Pareto set corresponds to a design point and the horizontal and 
vertical axes are values of the competing objectives. We see that, based on the models 
used here, the profit and water usage objectives are not necessarily competing, which 
makes sense since the cost of water is included in the profit model. The other two sets 
of objectives clearly are competing since moving towards a better value of one 
objective results in degrading the other.  

 
As seen in Figure 3, profit is maximized for lower values of water usage. This 

indicates the cost of water significantly impacts any monetary gains realized by sales 
of the crop. The trade-off in Figure 2 shows the demand is associated with crops 
requiring large amounts of water.  
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If a farmer wished to lower his water usage, he would be required to plant 

crops not in demand. This, in turn, affects the prices of the crops, which has not been 
directly incorporated into this model. Taken together, the graphs show the difficult 
decisions farmers must manage to maintain their livelihood. In addition, more 
rigorous analysis of the connections between profitability and demand should be 
incorporated to better understand the effects of changing crop portfolios on return of 
investment. 

 
Initial Seed % crop A % crop B % crop C 
 1 40 40 20 
 2 10 10 80 
 3 33 33 33 
 4 25 25 50 
 5 25 50 25 
 

Table 4: Initial design points seeded in GA for three-crop farm, set over the entire 
planting horizon 

 

 
Figure 2: Trade-off curve for objectives minimizing water usage and deviation from 
demand. Note the current demand requires the most water 
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Figure 3: Trade-off curves for objectives minimizing water usage and maximizing 
profit. The negative values on the profit axis indicate we actually minimize the 
negative of profit. Note the maximum profit corresponds to minimal water usage. 

 

 
 

Figure 4: Trade-off curve for objectives maximizing profit and minimizing deviation 
from demand. The most profitable strategy requires the largest deviation from 
demand 
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4. Case Study: Pajaro Valley, CA 

 
We now apply our modeling and optimization framework to the Pajaro Valley 

region of central California, which was developed for agriculture in the late 1800s. In 
the decades since its establishment, continued stresses on the groundwater basin from 
significant pumping for primarily (84%) agricultural use have resulted in the basin 
being in a “critical condition of overdraft” [Error! Reference source not found., Error! 
Reference source not found., Error! Reference source not found.]. This designation has 
caused the entire region to operate under water use restrictions. 

 
Stakeholders in the Pajaro Valley, including farmers, land owners, 

environmental agencies, and residents, have been working on a multifaceted solution 
to the overdraft problem. The community holds quarterly dialogues, along with 
monthly subgroup meetings, to discuss possible long-term, and short-term, 
resolutions to the problem.  

 
A task force involving the Pajaro Valley Water Management Agency 

(PVWMA) has also been established, and members of the task force asked for help 
on resolving the underlying optimization problem, which seeks to balance the 
competing interests of the different parties. 

 
Urban water use is estimated at 10,000 acre-ft/yr [Error! Reference source not 

found.]. According to the same USGS report, the PVWMA service area encompasses 
about 70,000 acres, 40% of which is used for agriculture. The sustainable water yield 
of the basin is estimated between 24,000 acre-ft/yr and 48,000 acre-ft/yr, the higher 
yield being possible if pumping at the coast is eliminated and replaced by water from a 
different source (cf. [Error! Reference source not found.]). Thus, after taking into 
account the urban water use, the sustainable amount of water available is between 0.5 
acre-ft/yr and 1.36 acre-ft/year per acre of agricultural land.  

 
Berry farmers in the Pajaro Valley are particularly affected, as they must 

maintain profitability under reduced irrigation strategies. California grows more 
berries than any other region in the world [Error! Reference source not found.], 
providing roughly 87% of the country’s strawberries in 2007. Other berry crops 
produced in the region include raspberries, blackberries, and blueberries. Strawberries 
are typically a high water usage crop, requiring 2.67 acre/ft of water per year, while 
raspberries and blackberries use only 2 acre/ft (or less) of water per year (see Table 6).  
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4.1  Preprocessing 
 
Planting strategies are modeled over a ten year period using historical and 

extrapolated data for the sales prices of the different berries and the price of water. A 
planting year runs from September to the following August. We consider the 
percentage of each crop that is in the ground at a possible planting time for that crop, 
denoted by S, R, B, L, and C for strawberries, raspberries, blackberries, lettuce, and 
cover crops (we drop the xi

L  notation for simplicity). As previously, we identify the 

planting period for that crop with a subscript. For example, L5  is the total percentage 
of lettuce in the ground at the 5th planting opportunity for lettuce. Thus, L5  
accounts for both unharvested lettuce and newly planted lettuce. We consider 2 
month “time steps" as all crops have even life cycles. The growing periods for each 
crop are described below. 

 
• Strawberries are a 14 month crop. Land is assigned to strawberries in September 

and the plot is occupied until the following November.  
• Blackberries are a 60 month crop, planted in September.  
• Raspberries are a 24 month year crop, again occupying land beginning in 

September. They yield twice during this period.  
• Lettuce is a four month crop (including preparation), which can be planted at any 

month.  
 
Over a 10 year time horizon, all berries can be planted each September, giving 

10 variables for each berry. Lettuce is tracked more frequently. In year 1, everything is 
planted in September and only lettuce can be removed (in 4 month intervals). In year 
2, strawberries will come out of the ground in November and the associated land is 
released for planting. Thus, after year 2, lettuce can be planted every 2 months, 
starting in November. For example, in January of year 2, the lettuce planted in 
September of year 2 would come out but lettuce planted in November would remain. 
New lettuce may also be planted at this decision point. We summarize the planting 
possibilities through the first three planting periods for berries in Table 5. The 
notation in the first row gives “month/year" , with month 9 referring to September, 
month 11 referring to November, etc. As noted earlier, the subscripts on the crop 
designation refer to the successive decision points for that particular crop. 
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Month 9/1 1/2 5/2 9/2 11/2 1/3 3/3 5/3 7/3 9/3 … 
Strawberries S1   S2      S3 … 
Raspberries R1   R2      R3 … 
Blackberries B1   B2      B3 … 
Lettuce L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 … 

 
Table 5: Preprocessing information for the Pajaro Valley example. We outline the 

calendar planting schedule for each of the crops. 
 
4.2  Constraints 

 
We require each variable be nonnegative and the total percentage of land 

(including fallow land) sum to 100. We define the amount of fallow land as the 
percentage of land left after accounting for all the crops in the ground (i.e. 100 minus 
the total percentage of acreage allocated to “for profit" crops). 

 
These requirements impose the following inequality constraint in September 

of the first year and the inequality constraintsin September of years 2 through 10. 
 
S1 +R1 +B1 +L1 £100  
 
 S j +Rj +Bj +L(4+6( j-2)) £100,    j = 2,...,10 (10) 
 
As strawberries are a 14-month crop, land allocated to strawberries in 

November of year 2 through September of year 3 is S2 -S1 . S2  tracks strawberries 
planted in September of year 2 along with those strawberries planted in September of 
year 1, as those berries have not been removed from the ground. Similar adjustments 
are needed for the following years. Therefore, the constraints guiding the amount of 
land available in years 2 through 10 for planting lettuce are given by  

 
L j £100-(Sk -Sk-1)-Rk -Bk, j =5,...,60, j ¹10,16,...,52, k =2,...10 (11) 
 
The amount of land available for planting lettuce in year 1 is slightly different, 

as only S1 is needed to account for acreage dedicated to strawberries and potential 

lettuce planting only occurs every 4 months.  
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Thus, in year 1, the constraint associated with planting lettuce is given by  
 
 L j £100-S1 -R1 -B1,    j = 2, 3.  (12) 
 
Starting September, year 2, additional constraints on lettuce are needed as 

decision points for lettuce begin to overlap. Decision points now occur every two 
months, meaning the percentage of lettuce in the ground at these decision points 
includes both newly planted lettuce and lettuce planted at the previous decision point. 

 
 For example, the 5th  decision point occurs in November of year 2, two 

months after the 4th  decision point in September of year 2. Lettuce may have been 
planted in September, but it must stay in the ground 4 months. Thus, we must have  
 

ସܮ  ≤  ହ; (13)ܮ
that is, we cannot yet harvest the lettuce planted in September. As this is year 2, we 
note that the lettuce in the ground in September is newly planted, as any lettuce 
planted at the previous decision point in year 1 would have completed its 4-month 
harvesting window. 

 
However, at subsequent decision points, the decision variables for lettuce 

must telescope appropriately to define minimum values for percentages of acreage 
dedicated to lettuce. At decision point six, the amount of lettuce in the middle of its 
four month planting requirement is L5 -L4 , the amount of new lettuce planted at 
decision point 5. Similar lower bounds are defined at future decision points, giving the 
set of constraints  

଺ܮ ≥ ହܮ −  ;ସܮ
଻ܮ ≥ ଺ܮ − ହܮ) −  ସ);  (14)ܮ
଼ܮ ≥ ଻ܮ − ൫ܮ଺ − ହܮ) −  ;ସ)൯ܮ
⋮ 
  

The inequality constraints for raspberries follow the same trend, as ܴଶ 
accounts for raspberries planted in year 1 as well as raspberries planted in year 2. The 
amount of new raspberries in September of year 2 is thus ܴଶ − ܴଵ, meaning the 
raspberries in the ground in September of year 3 must be at least this amount.  
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New raspberries in September of year 3 are ܴଷ less what is put in the ground 

in September of year 2, or ܴଶ − ܴଵ. This leads to the set of inequality constraints 
associated with planting raspberries described using  

ܴଶ ≥ ܴଵ; 
ܴଷ ≥ ܴଶ − ܴଵ;  (15) 
ܴସ ≥ ܴଷ − (ܴଶ − ܴଵ); 
ܴହ ≥ ܴସ − ൫ܴଷ − (ܴଶ − ܴଵ)൯; 
⋮ 

 
 
As with raspberries, strawberries from the previous September are in the 

ground during the current September. The inequality constraints imposed on 
strawberries thus match the form for raspberries. Thus, for strawberries, we have  

 
ܵଶ ≥ ଵܵ; 
ܵଷ ≥ ܵଶ − ଵܵ; 

ܵସ ≥ ܵଷ − (ܵଶ − ଵܵ);    (16) 
ܵହ ≥ ܵସ − ൫ܵଷ − (ܵଶ − ଵܵ)൯; 
⋮ 

 
Overall we have a total of 144 linear inequality constraints. 
 
4.3  Objective Functions 

 
The specific operation cost, water usage, yield, and sale price for each crop is 

given in Table 6. It is important to note the values for lettuce are per crop (i.e. 4 
months), while the remaining parameters are annual. Also, note the model parameters 
for raspberries change the second year they are in the ground, emphasizing the need 
to accurately track the newly planted versus the existing raspberries. Applying an 
averaged value to all raspberries currently planted will give infeasible solutions.  
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Parameters Strawberry Blackberry Raspberry Raspberry Lettuce Cover 
    year 1  year 2 (per 

crop) 
 

Operational 
( ௜ܵ +  (௜ܮ

$22000 $22500 $27000 $12000 $2200 $1850 

Acre       
Water Usage( ௜ܹ ) 2.67 2 2 1.5 1 0 
acre-ft/acre       
Yield( ௜ܻ) 7000 3500 4800 5000 1 0 
“boxes"/acre       
 
Table 6: Model parameters for the Pajaro Valley farm example. Note the differences 

in model parameters for different harvest years for raspberries. 
 

Table 7 contains the changing prices of water and crops over a ten year 
period. These were based on market values from 2003-2008 and extrapolated with 
increasing water prices. This scenario could, for example, guide farmers to make 
decisions or analyze profit forecasts under the changing drought conditions in that 
region.  
 
 Year 1 2 3 4 5 6 7 8 9 10 
 Water ($/acre-ft) 120 120 160 160 171 175 177 179 185 190 
Strawberry ($) 5.50 6.15 6.15 6.20 7.75 6.50 7.75 7.00 6.65 10.00 
Raspberry ($) 5.40 5.30 5.50 5.65 11.50 10.75 10.50 10.25 10.00 10.00 
Blackberry ($) 4.80 4.80 4.90 4.80 13.50 12.25 10.75 10.00 10.25 12.00 
 

Table 7: Water cost and sales prices over 10-year horizon. 
 

For this problem, the objective function associated with profit is the sum of 
the profit obtained for each crop, as calculated in the previous example. We need to 
calculate the acreage of each crop based on the variables S, R, B, and L , which will 
not necessarily give the complete picture of what is in the ground. These values 
represent the total acreage of a crop at specified planting times, but the fallow 
(unplanted) land changes in November when strawberries from the previous planting 
period are removed. This adjustment is not made in the current model.  

 
Using this information, profit is accumulated by crop and year. For example, 

the total profit associated with strawberries ௌܲ is given by  
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ௌܲ = ܿௌ ଵܵ(year 1) 

  + 
ܿௌ
6 ଵܵ + ܿௌ(ܵଶ ଵܵ)(year 2) 

  + ௖ೄ
଺

(ܵଶ ଵܵ) +  ܿௌ൫ܵଷ(ܵଶ ଵܵ)൯(year 3)  (17) 

  +
ܿௌ
6
൫ܵଷ(ܵଶ ଵܵ)൯ +  ܿௌ ቀܵସ൫ܵଷ(ܵଶ ଵܵ)൯ቁ (year 4) 

  +
ܿௌ
6 ቀܵସ൫ܵଷ(ܵଶ ଵܵ)൯ቁ+  ܿௌ ൬ܵହ ቀܵସ൫ܵଷ(ܵଶ ଵܵ)൯ቁ൰ (year 5). 

 
 

where ܿௌ represents the annual per acre profit for strawberries, calculated as ܿௌ =
price per box ∗ 7000− 22000.  

 
The annual profit is adjusted starting in year 2 in Equation Error! Reference 

source not found. to account for the two months from September to November 
when strawberries planted during the previous year are still in the ground (and 
assumed to be still producing fruit). 

 
The profit for raspberries differs depending on the age of the crop. The 

operational cost for the second production year of raspberries is lower than the first 
production year, and the yield changes as well.  

 

5).))))(year (((()))(((
4))))(year ((( ))((

3)))(year (( )(
2))(year (  

1)(year  

12345112342

123411232

1231122

12112

11

RRRRRcRRRRc
RRRRcRRRc

RRRcRRc
RRcRc

Rcp

r

rr

rr

rr

rr









(18) 

 
Note we have  
 
ܿ௥ଵ=price per box*3500 - 27000 and ܿ௥ଶ=price per box*4800−12000. 
 
Profit calculations for the remaining crops are more straightforward. Fallow 

land has a negative contribution to profit, as nothing is produced but rent must still 
be paid. 
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Our second objective, to minimize the amount of irrigation, is calculated as in 
the previous example. Our final objective uses the current berry production for the 
Pajaro Valley as the value for demand. A typical planting year includes 30% 
strawberries, 10% raspberries, 10% blackberries, and 40% cover crops (i.e., lettuce) 
with the remaining 10% fallow. We minimize the deviation from this demand in the 
standard ܮଶ-norm at each two month decision point.  
 
4.4  Numerical Results 

 
Although we could begin our farming model with any intitial farm 

configuration, we present results as if we were begining our planting season in 
September with an empty 100 acre farm. The numerical results highlight the decision 
difficulties currently faced by farmers operating under limited irrigation strategies. 
Using the more realistic crop parameters generates trade-off curves with much less 
linearity than the simplified example. However, we see the same general trends in 
Figures 5 - 7. As seen in Figure 5, current production in the valley actually requires 
significant irrigation. Reducing irrigation requirements will mean the farmers must 
alter their current portfolios.  

 

 
 

Figure 5: Trade-off curve for objectives minimizing water and deviation from 
demand. Note the current crop portfolio is the most water intensive. Also, the 
feasible solutions provide a variety of choices to balance the competing objectives. 
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Figure 6: Trade-off curve for objectives minimizing water usage and maximizing 
profit. The more profitable feasible solutions are the most water intensive. With these 
model parameters, the less irrigation required,the less profitable the portfolio. 

 
 
Figure 7: Trade-off curve for objectives maximizing profit and minimizing deviation 
from demand. No obvious trend is noticeable in these results, perhaps indicated more 
clearly defined objectives should be considered. The feasible solutions do not provide 
clear analysis to improve the decision-making capability of the farmer. 
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Table 8 contains the values of the three objectives for the best point found for 
each, given in bold. Furthermore, Figures 8, 9, and 10 show the amount of each crop 
planted for each objective. Note that the water usage solution requires most of the 
region remains fallow. Previous studies [Error! Reference source not found.] 
incorporated the sustainable yield as a hard constraint and resulted in similar solutions 
with just under 25% of the land allocated to raspberries, so these findings are 
consistent but allow growers to consider farming strategies that are less restrictive.  

 
Water (acre-ft) Profit ($) Demand 
7.989e+02 8.2456e+06 40% 
1.7523e+03 2.7638e+07 30% 
1.4781e+03 1.3627e+07 22% 
 

Table 8: Best function values found for each objective. This information indicates a 
farmer loses an order of magnitude in profit for an order of magnitude reduction in 
water usage. Current crop portfolios are profitable yet water intensive. 

 
 
Figure 8: Crop portfolio for minimal water usage. Note the prevalence of unfarmed 
(i.e., fallow) land. Raspberries and blackberries remain in production throughout the 
planting cycle. However, once strawberries are planted in September of one year, they 
are not replanted until September two years removed. 



234                                        Journal of Agriculture and Environmental Sciences, Vol. 3(1), March 2014             
 

 

 
 

Figure 9: Crop portfolio for maximized profit. Note vegetables now appear on the 
farm, as well as increased levels of both strawberries and raspberries. 

 
 

Figure 10: Crop portfolio for minimizing deviation from demand. The optimization 
algorithm is able to keep a consistent farm allocation throughout the planting cycle. 
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5. Conclusions 
 
We have used a relatively simple model of a farming operation coupled with 

multi-objective optimization algorithms to aid a farmer in crop portfolio selection 
while operating under a variety of constraints. The use of a genetic algorithm provides 
a derivative-free, global search of the design space. The preprocessing step is an 
essential part of the optimization strategy, as effective management of the design 
space significantly improves the performance of the optimizer. Significant effort 
should be spent in this stage to ensure the optimization algorithm can locate 
potentially optimal points in a short time frame. The objective functions should be 
carefully formulated, incorporating any decisions a farmer is likely to make over the 
time horizon. We recommend the use of multiple objectives to best capture the 
decision making process of the farmer.  
 

The results from the more specific case study for the Pajaro Valley reiterate 
the benefits of our modeling and optimization strategy. The framework put in place 
was able to handle the varied parameters associated with four distinct crops, each with 
different planting rules and yields. One of the crops, raspberries, even had different 
parameters associated with distinct production cycles.  

 
Future work will address model development and optimization using more 

complicated realizations of a farming process and water delivery system. The basic 
strategy outlined in this paper, however, will remain the same. The flexibility of the 
overall strategy allows for a “plug-and-play" environment, giving users the capability 
to emphasize selected aspects of a given farming operation. 
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