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Abstract 
 

 

Six plant species of Yaupon, Eastern red cedar, American holly, Arizona cypress, Arborvitae and Roughleaf 
dogwood were utilized to determine their effectiveness in the removal of atmospheric ammonia. All species 
were exposed to three ammonia levels (1, 5 and 10 ppm) in an environmental chamber. Foliar ammonia 
content was quantified using an enzymatic technique. The effects of exposure to ammonia on the 
physiological responses (e.g. photosynthetic activity, stomatal conductance, and transpiration rate) of plants in 
ambient condition were also determined using an open design photosynthetic gas exchange system. Foliar 
ammonia content was significantly different among the six plant species (p<0.0001) with Eastern red cedar 
exhibiting the highest content. The physiological responses differed significantly depending on the plant 
species and the ammonia treatment level. The photosynthetic response of plants to the presence of ammonia 
was mixed. At low exposure level, all species except Arborvitae had decreased photosynthetic activity, 
reducing by as much as 44.5% for Yaupon.  At the highest concentration, however, Yaupon’s photosynthetic 
activity improved by about 10%. Exposure to ammonia caused increased stomatal conductance and 
transpiration rate on American holly and Arizona cypress, making them more susceptible to water loss.  
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1. Introduction 
 

Highly variable combinations of multiple pollutants in ambient atmosphere can pose negative effects on 
vegetation (Krupa & Legge, 2009) through transfer by the combined forces of diffusion and flowing air movement 
(Khan & Abbasi, 1999). Vegetation constantly exposed to the atmospheric pollutants may absorb, accumulate and 
integrate pollutants impinging on the foliar surfaces. Effects are primarily reflected in the plant physiology on major 
system and organs of plants constantly exposed to the atmosphere where continuous exchange of gases in and out of 
the environment occurs (Radhapriya et al., 2012).A number of agricultural chemicals adversely affect growth and 
development of plants (Furlan et al., 1999).In poultry houses, ammonia (NH3) and dust were the primary 
contaminants of concern (Adrizal et al., 2008). 
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Ammonia is a colorless gas at room temperature but becomes a liquid when compressed. It easily dissolves in 

water and has a pungent and suffocating odor with an odor threshold of5 ppm. It reacts with strong oxidizers, acids, 
halogens, bleach, salts of silver, zinc, copper, and other heavy metals which makes it corrosive to copper and 
galvanized surfaces. A major use of it includes refrigeration, plastic and textiles processing but aqueous solution are 
commonly used as household cleaning agents (Salocks & Kaley, 2003). In the atmosphere, it is the third most 
abundant nitrogen form which can increase more rapidly due to various natural and anthropogenic sources 
(Wollenweber & Raven, 1993). Agriculture is a major source ofNH3 emissions mainly due to livestock management 
and fertilizer application, while processing plants, power plants, traffic, human excreta and other sources only play a 
minor role (Fangmeier et al., 1994). 

 

Serious dieback of forests and decline in the number of plant species are observed in the Netherlands where 
intensive animal breeding is concentrated (Roelofs, 1986). According to Van Hove et al. (1990), NH3  is toxic in plants 
since it functions as an electron acceptor causing uncoupling of electron transport in the membrane and saturating 
membrane lipids causing membrane dysfunction. In general, it is the assimilation capacity of the plant species that 
determines the degree of injury. If the assimilation capacity is not sufficient to detoxify NHy, acute (visible) injuries 
may occur (Fangmeier et al., 1994). However, the sensitivity of terrestrial plants to NH3 exposure varies; the capacity 
of some plants to detoxify NH3 upon absorption is entirely dependent on the availability of carbohydrate (Dueck et 
al., 1998). 

 

In a study by Dueck et al. (1998), Scots pine enclosed in a chamber with NH3 had lower needle water 
potential, increasing the drought sensitivity of the plant. In another study, honey locust responded differently in the 
presence of increased NH3 compared to other plant species;  its color was enhanced, lower damage values were 
recorded, and significant increase of nitrogen in the leaves were measured that indicated greater metabolism or 
detoxification of the absorbed NH3 compared to red cedar, hybrid poplar and reed canary grass (Adrizal et al., 
2008).Wollenweber and Raven (1993) reported that increasing atmospheric NH3concentrations increased the growth 
rate of perennial ryegrass (Loliumperenne) but not its nitrogen acquisition per unit dry matter. 

 

There have been several studies on deposition of air pollutants onvegetation but very limited studies have 
determined the effectiveness of trees on mitigating air emissions from poultry buildings. The objective of this study 
was to compare the effectiveness of several species of trees for the removal of atmospheric NH3, which is one of the 
major pollutants emitted from poultry buildings. Technologies have been developed and adopted to mitigate and 
reduce the environmental impact of NH3 emissions from animal facilities in general.  However, limitations on 
widespread use of control technologies in animal buildings exist because of issues on cost effectiveness and 
performance of such technologies especially under harsh environmental conditions. Tree species that have higher 
foliar ammonia content might be effective in withstanding the poultry farms’ environmental conditions and can 
potentially benefit confined animal feeding operation’s owners and managers in deciding an alternative environmental 
control efforts for mitigating the impact of air emissions from their facilities. 

 

2. Materials and Methods 
 

Exposure to Ammonia. 
 

Seedlings of six different plant species comprised of 12-months-old Ilex vomitoria (evergreen shrub), 14-months-
old Juniperusvirginiana (evergreen conifer), 10-months-old Ilex opaca (broad-leaved evergreen), 12-months-old Cupressusarizonica 
(evergreen conifer), 12-months-old Thijaplicata x standishii (evergreen conifer) and 15-months-old Cornusdrumondii (deciduous 
shrub), which were moderately to fast growing trees were selected as test species for the experiment. The seedlings (20-
50 cm in height) were obtained from commercial sources.  They were selected for uniform sizes and individually 
planted into one-gallon polypropylene pots. Seedlings were housed and allowed to adjust to greenhouse conditions for 
four months prior to the start of ammonia exposure measurements. The planting medium consisted of a potting soil 
mixture with slow release of macro and micro mineral nutrients (Hyponex by Scotts© Potting Soil).All plants were 
watered to field capacity as needed before exposure to different ammonia levels to minimize stress due to greenhouse 
condition. Throughout the experiment, each pot was watered twice per week or whenever the soil volumetric water 
content, measured  with a soil moisture meter (Field Scout TDR 100/200, Spectrum Technologies, Plainfield, IL), 
decreased to less than 10%. During the exposure, plant pots were sealed with Parafilm sheets to avoid NH3deposition 
on the soil which might affect apoplastic NH4

+ assimilation through the roots.  
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An environmental chamber (82-liter capacity) that was used in the experiment was made up of Plexiglas 

material (40.64 cm x 30.48 cm x 66.04 cm) (Figure 1) was designed systematically and constructed to ensure the 
containment of NH3 and prevent the escape of the gas into the surrounding.  

 

The chamber was housed inside the greenhouse to reflect ideal ambient conditions and primarily to ensure 
stomatal opening during the experiment. Several holes were drilled into the walls of the chamber to serve as inlets and 
pathways for NH3 injection point and an outlet for an NH3 detector tube to measure the concentrations inside. Inlets 
were covered with rubber stopper and supplemented with Parafilm tape to prevent wall losses. Inner walls and other 
supplementary instruments were coated with Teflon material to avoid ammonia reaction with the surface. Air 
circulation in the chamber was facilitated by an axial fan mounted through a 2.54-cmstainless steel rod attached inside 
the chamber. The fan was kept in continuous operation to reduce space variability of gas concentration, reduce the 
boundary resistance layer of the leaf and, to avoid a critical wind velocity (0.3 – 0.4 m s-1) (Van Hove et.al., 1989).  

 

 
Figure 1. A Plexiglas environmental control chamber showing the locations of an axial fan, a hobo 
datalogger, and multiple plugged openings to provide access for NH3 injection and measurement. 
 

Preliminary experiment was performed to ensure leaf damage will be prevented due to air velocity andthe 
velocity was monitored using an air velocity meter (Model 9545-A, TSI Inc., Shoreview, MN). Air velocity 
measurements were done at 12.7 cm and 38.10 cm above the surface floor of the environmental chamber; these 
heights were chosen since they covered the range of seedlings heights that were measured from the pots up to the leaf 
foliage surface. Temperature, relative humidity and light intensity were also monitored throughout the experiment 
using Hobo Data loggers (Hobo U-12 Logger, Onset Computer Corporation, Bourne, MA). The chamber was tested 
for air leakage using the Nextteq Irritant Smoke Tube Kit (P/N 9501, Nextteq LLC, Tampa, FL).  The kit was used to 
generate smoke inside the chamber and after about 1 min, an axial fan mounted inside the chamber was turned on and 
allowed to run for about 15 min. Visual inspections did not indicate any leak.  

 

The seedlings were exposed to three concentrations of ammonia (low = 1 ppm, medium = 5 ppm, and high 

= 10 ppm) for an hour at a constant gas flow rateof 0.03 m3h-1 (0.5 lpm).  The maximum NH3 concentration of 10 
ppm was chosen since it was the typical concentration measured at the exhausts of poultry buildings at Stephen F. 
Austin State University’s Broiler Research Center where the same plants species were used for a separate study.  
Ammonia was supplied to the chamber as a compressed gas from 1R (29.50 liters internal volume) cylinder size 
(Matheson Tri-Gas Company) using polytetrafluoroethylene tubing.  The delivery of gas into the chamber was 
controlled by a stainless steel regulator and metered by a glass tube flow meter (Series GC, Key Instruments, Hatfield, 
PA).  Ammonia concentration inside the chamber was measured using NH3 passive dosimeter tubes (Ammonia 2/a, 
Drager Safety, Atlanta, GA) prior to every start of a new exposure experiment and after the designated sampling 
duration.  

 



4                                                             Journal of Agriculture and Environmental Sciences, Vol. 8, No. 1, June 2019 

 
The exposure period of one hour was used to achieve a threshold (0.397 to 0.864 ppm) that has been found 

by Krupa & Legge(2009) to cause damage to some terrestrial plants exposed to NH3 in an environmentally controlled 
chamber. A total of 108 seedlings of all six plant species were exposed to three levels of ammonia for the foliar 
ammonia measurements. Eighteen seedlings per species were subjected to a complete balanced-randomized design in 
the greenhouse benches.  Two plants were used per exposure to three treatment levels in order to collect enough 
samples for enzymatic analysis.  Exposure to NH3 was replicated three times resulting in nine separate runs for each 
plant species. After each exposure, fresh plant foliage were randomly collected from each exposed species and control 
(not exposed to ammonia) species and subjected to laboratory analysis at the Environmental Assessment Laboratory 
for foliar ammonia content. Foliar ammonia was determined through a modified enzymatic technique (Kun & 
Kearney, 1974). 
 

Foliar Ammonia Quantification. 
 

Leaf samples were thoroughly washed with water, 0.1 M HCl, and 0.2% detergent solution to remove 
waxy/greasy coating on the leaf surfaces. Samples were then dried with tissue paper before drying in the oven at 70°C 
for 48 hours to remove moisture, render plant tissues inactive, and stop enzymatic reactions. Drying plant material 
was necessary to reduce risk of degradation and other chemical changes during storage (Marur&Sudek, 1995). After 
drying, the leaf samples were brittle enough to be grounded with cooled mortar and pestle (Mattson et. al., 2009) to a 
powdery consistency and stored until ready for extraction process. Oven-dried leaf samples (200 mg) were suspended 
in 10% Trichloroacetic acid solution to deproteinize (Ali &Lovatt, 1995) and stored at -20°C to prevent degradation 
of leaf samples especially when analysis wasn’t performed immediately. Leaf samples underwent centrifuge processing 
at 4100 revolutions per minute (rpm) at 4°C for 10 minutes to liberate NH3 from the extract. The centrifuge duration 
of 10 minutes was pre-determined during the initial experiment on leaf samples taken from all six plant species. The 
homogenate (extracts separated from the solid particles) were neutralized using 2 M of KHCO3 to attain dynamic 
equilibrium between NH3 and NH4. The amount of KHCO3 required to entirely neutralize the plant extract was 
determined in a separate experiment.  Neutralized extract sample was then prepared for enzymatic analysis. The 
following reagents were pipetted into the sample cell (1 cm diameter of sample cell light path): (a)200µL of 0.5M tris-
HCl buffer (pH 8); (b) 100µL of 0.1M 2-oxoglutarate solution (pH 7.4);(c) 200µL of 8mM β-NADH solution; (d) 
2000µL of distilled water; and(e) 100µL of neutral extract sample. The first absorbance (A1) of the solution was 
recorded after two minutes in the spectrophotometer (DR 3900 Benchtop Spectrophotometer, Hach Company, 
Loveland, CO). The 20µL of glutamate dehydrogenase (GLDH) enzyme which was commercially purchased was 
added to the solution to start the reaction, and the absorbance (A2) was recorded immediately.  The calibration curve 
was generated using NH3 standard dilution to produce six ammonia concentrations. Absorbance was measured using 
the same enzymatic procedures. Foliar ammonia content was then calculated using Equation 1. In Equation 1, A1 and 
A2were the measured absorbance before and after the enzyme was added, respectively; V1 was the sample volume 

(ml); V2 was the total volume (ml);  was the extinction coefficient of NADH; and F was the dilution factor and was 
equal to 1 when the sample was not diluted.  

𝐹𝑜𝑙𝑖𝑎𝑟𝑎𝑚𝑚𝑜𝑛𝑖𝑎 =   𝐴1 − 𝐴2 ×
𝑉1

𝑉2×𝜖
× 𝐹                        Equation 1 

 

Physiological Response Measurement.   
 

An open design of photosynthetic gas exchange system (Model 6400, LI-COR Instruments, Lincoln, NE) 
was used to determine the effect of NH3 on the physiological responses of plants in ambient conditions.  As air is 
continuously passed through the leaf chamber of this instrument, rate of carbon dioxide (CO2) uptake and water loss 
were used to determine the changes on the physiological responses of plants.  Differences in CO2 and H2O in an air 
stream flowing to the leaf cuvette (reference cell) were compared with the air stream flowing out of the sample. The 
net CO2 assimilation rates or net rate of photosynthesis (A), transpiration rate (E), stomatal conductance (gs) were 
obtained before and immediately after exposure to NH3 on the youngest fully expanded leaf (YFLs), which was 
mostly the 3rd leaf from the top of non-stressed (field water capacity) individual plants. All measurements utilized the 
constant and controlled value of the leaf temperature of 25°C (Watanabe et al., 2012). When it was evident that the 3rd 
leaf had signs of senescence (desiccation), the next younger leaf was considered and subjected to measurements 
instead. For visible injuries on the plants, the effects of NH3 exposure were categorized into three types:  

 

(1) Collapse of leaf tissue with the development of necrotic patterns, (2) yellowing or other color changes, and (3) 
alterations in growth or premature loss of foliage (Sikora & Chappelka, 2004).  
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During the study, no noticeable changes in the plants were observed after the exposure. Hence, a short exposure 
to NH3 for one hour was determined irrelevant to initiate such injuries mentioned and was understood as not 
applicable to this study. All measured values were expressed on a leaf-area basis by taking the average areas of 
leaf images scanned five times on a leaf-area meter (Model CI-202, CID Bio-Science Inc., Camas, WA). For 
conifer plants, needles were separated individually and laid flat on the leaf area meter. Prior to exposure inside 
the chamber, specific part of the foliage was marked and carefully identified so troubles on locating the identified 
part after exposure were avoided. 

 

Statistical Analysis 
 

The effectiveness of various tree species on foliar NH3 uptake was determined with two-way analysis of 
variance (ANOVA) procedure using SAS statistical software (Version 9.2, SAS, Cary, NC). Tukey’s test was 
performed after significant ANOVA results to compare the differences of means. A repeated measures analysis was 
used to determine the differences on the physiological responses of the six plant species before and after exposure to 
three ammonia levels.  

 

3. Results and Discussion 
 

Environmental Conditions 
 

Temperature, relative humidity and light intensity were closely monitored throughout the experiment with the 
Hobo Datalogger. Temperature within the chamber was higher than the outside temperature by about 0.1°C – 6.4°C 
during the experiments.   The relative humidity inside the chamber during the measurements ranged from about 66% 
to 86% while the light intensity was from approximately 210 lum/ft2 to 1128 lum/ft2.  

 

Foliar NH3 content 
 

The pooled mean of the foliar NH3 concentrations (µmol NH3/ml of leaf extracts from dry weight leaf 
samples) of six plant species are shown in Figure 2. Results showed a significant statistical difference (p<0.0001) on 
foliar NH3 content of all six species of plants. Eastern red cedar had the highest foliar NH3content (0.26 µmol/mL) 
followed by Arizona cypress (0.24 µmol/mL), American holly (0.23 µmol/mL), Roughleaf dogwoods (0.22 
µmol/mL), Arborvitae (0.19 µmol/mL) and Yaupon (0. 14 µmol/mL) 

 

Adrizal et al. (2008) found higher capacity of deciduous trees over evergreens (e.g. hybrid poplar, honey 
locust, and reed canary grass) to incorporate NH3 into their tissue and plant foliage to trap approximately 30% of NH3 
discharged from the exhaust fans of poultry and livestock barns. Adriaenssens et al. (2010) found that NH3 uptake 
was always higher for deciduous species than for pine species (e.g. potted silver birch, European beech, pedunculated 
oak and Scots pine saplings). Results of this study however did not follow the same conclusions reached by Adrizal et 
al. (2008) and Adriaenssens et al. (2010). Eastern red cedar which is a conifer yielded the highest NH3 content 
compared to Roughleaf dogwood plants. Adrizal et al. (2008) mentioned that leaf surface area between broad-leaf and 
needle leaf can be a factor for this higher efficiency of conifers to absorb NH3-N. Adriaenssens et al. (2010) related 
this to lower N demand of conifers because of lengthy needle retention and efficient internal N recycling as an 
attributing factor. For plants measured with lower foliar NH3 content (e.g. Yaupon, Arborvitae), assimilation rate 
might have been limited due to compensation capacity of plants. Langford and Fehsenfeld (1992) reported that in  
montane-subalpine forest in Colorado, trees became either a source or sink depending on the atmospheric conditions. 
In a laboratory experiment, increased temperature caused the plant to switch from being a strong sink for atmospheric 
NH3 to being a significant source (Husted & Schjoerring, 1996).  
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Figure 2. Comparison of means of foliar NH3 content of the six plant species among all treatment levels. 
Error bars represent standard errors. Groups with the same letter are not statistically different at the 5% 
level. 
 

Figure 3 shows significant statistical difference (p=0.0006) of treatment levels on the foliar NH3 content of 
the plants as assimilated by the leaves. Ammonia concentration of plants species not exposed to NH3 (0.19 umol/mL) 
were significantly lower when compared to plants exposed at three treatment levels (e.g. 0.221 umol/mL, 0.224 
umol/mL, 0.225 umol/mL).  Both species x treatment interaction significantly influenced the foliar NH3 content 
(p=0.0137).Regardless of treatment levels, exposure toNH3resulted in increased foliar NH3 content of plants. 
Obvious increased on foliar NH3 content on control and plants subjected to treatment was observed on Yaupon, 
Arborvitae and Roughleaf dogwood plants (Figure 4). Treatment levels also affected the foliar ammonia concentration 
as plants not exposed to ammonia were analyzed with lower ammonia content (p<0.0001) than those exposed at 
various concentration.  
 

 
 

Figure 3. Tukey’s test for thedifferences on foliar NH3 content among treatment levels. Groups with the 
same letter are not statistically different at the 5% level. 
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Figure 4. Pooled foliar ammonia content at three treatment levels in comparison to control plants. Error bars 
represent standard errors. 
 

Physiological response: Net photosynthetic rate, stomatal conductance, and transpiration rate 
 

Leaf photosynthesis (An) varied with species type ranging from 2 to 17 µmol CO2m-2s-1 for conifers, 3-22 
µmolCO2m-2s-1 for evergreen broad-leaved plants and highest for deciduous broad-leaved plants at 3-27 µmol CO2m-

2s-1 (Raghavendra, 1991).Unlike Adriaenssens et al.(2010) study, the results showed high An on most conifer and 
evergreen plants (e.g. Arizona cypress, American holly) than deciduous plant species (e.g. Roughleaf dogwood) used 
for the study. This high Anmight indicate, according to Raghavendra (1991), that evergreen needle-leaf trees are 
efficient in light capture, thus reducing energy waste especially during light saturation. 

 

Change in the photosynthetic rate of plant species was evident even when exposed to the low level of 
treatment (Figure 5a).  The response of plants to the presence of NH3is seen as either an increase or decrease in their 
photosynthetic rate.  Interactions of species vs. treatment levels (p<0.0001) and species vs. exposure (p=0.0056) have 
a significant difference in plants response (An) at three treatment levels. At low NH3 treatment level, all four species of 
Yaupon (-44.53%), American holly (-18.62%), Eastern red cedar (-28.79%) and Roughleaf dogwood (-16.99%) have 
an observable decrease in their photosynthetic rate after exposure (Figure 5a).Both for Arborvitae (4.14%) and 
Arizona cypress (3.01%), photosynthetic rate was observed to increase, though the increase was observably higher on 
Arborvitae. At medium treatment level (Figure 5b), Yaupon (61.12%) and American holly (13.86%) still responded the 
same as it was in the low treatment level with a decrease in their photosynthetic rate. Both Arizona cypress (-26.55%) 
and Arborvitae (-1.95%) with higher photosynthetic value after exposure to low treatment level showed a decrease in 
their uptake rate when exposed to a higher concentration. On the other hand, Eastern red cedar (130.57%) and 
Roughleaf dogwood (102.03%) showed increased in their photosynthetic rate after medium treatment level exposure. 
At the highest treatment level of exposure (Figure 5c), plant species were observed to have higher photosynthetic 
values after exposure except for American holly (-25.05%), Eastern red cedar (-4.4%) and Roughleaf dogwood (-
8.26%). Yaupon’s change in its photosynthetic rate increased (9.66%) after exposure to high concentration of NH3. 
Arizona cypress’ photosynthetic rate did not start to increase (6.47%) until the high treatment level was reached while 
Arborvitae showed a slight increase of0.74%. All other three species had lower photosynthetic rates. 

 

American holly plants’ An decreased after exposure to NH3 at all treatment levels while five other plants have 
inconsistent response at different treatment levels. Eastern red cedar which is a conifer and deciduous broad-leaf 
Roughleaf dogwood plant both responded with decreased An at low and high treatment level. Regardless of the 
response, Eastern red cedar’s An values still at the expected range of 2-17 µmol CO2m-2s-1 but an alarming indicator 
for Roughleaf dogwood with all values at three treatment levels falling below its An. Pearson and Stewart (1993) 
mentioned that NH3does not adversely affect photosynthesis, in fact, it increases CO2 uptake.  
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A study by Van Hove et al.(1990)  supported Pearson and Steward (1993)’s findings in which there was an 

increased CO2 assimilation in poplar leaves after exposure to144 ppb of NH3for 6 to 8 weeks. The increased 
assimilation of NH3 by plants can also be associated with the required carbon skeletons from carbohydrates 
synthesized during photosynthesis, which is an essential component for amino acids production (Massad et al., 
2008).Increased values of An of some plants after NH3 exposure can have a good effect as photosynthesis is the only 
requirement for growth of plants, particularly on productivity.  However, as stomata constantly take in more CO2, it 
also lets in more NH3 inside making it vulnerable to other pollutants in real field conditions (Raghavendra, 1991). 

 
 

 

 

 
 

Figure 5. Comparison of net photosynthetic rate of six plant species measured using LiCOR 6400 prior to 
and after exposure to NH3 at (a) low, (b) medium, and (c) high treatment levels. Error bars represent 
standard errors. 
 

Stomatal conductance of the lower surface of the leaf has a representative conductance value of 0.02-0.12 mol 
H2O m-2s-1 for trees and 0.08-0.40 mol H2O m-2s-1 for crops. For open and large area stomata, representative 
conductance value can be as high as 0.76 mol H2O m-2s-1but only 0.07 mol H2O m2s1 for small open stomata.  
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All throughout the leaf parts, open stomata of trees and xerophytes can be in the range of 0.04 to 0.16 mol 

H2O m-2s-1(Raghavendra, 1991). Figure 6(a, b, c) shows the stomatal conductance before and after exposure to NH3 at 
all treatment levels. As observed in net photosynthetic response of plants, there wasno consistent pattern or trend of 
increasing or decreasing response on stomatal conductance of plants at increasing treatment levels.Yet, species vs. 
treatment levels and species vs. exposure interactions both have a significant statistical difference (p<0.0001) on 
plants response. As a result, all three factors significantly (p=0.03) affected the stomatal response of plants. 

 

Stomatal conductance (gs) of Arizona cypress and American holly plants were unaffected by the 
concentration level, i.e. no matter what the treatment level was, the response was constant.  Both plants responded 
and exhibited increased stomatal conductance at all treatment levels which could reflect higher intake of NH3 into the 
leaf. Van Hove andBossen (1994) had the same observation on Douglas fir plants when exposed to low 
concentrations of NH3 but with control on light intensity. However, the interference and effect of light on plants in 
this study has been considered and the amount of light waskept constant (1200 umol CO2m-2s-1) in the leaf-gas 
exchange system. Hanstein et al. (1999) also observed gs to increase with increasing NH3 concentration (0 - 30 
nmol/mol of air) on three native meadow grasses species and poplar leaves after exposure at 144 ppb for 6 to 8 weeks 
(Van Hove et al., 1990).  

 

Evergreen conifer needles have generally lower gs than do broadleaf plants (Matyssek et al., 1995), therefore 
explaining the lower stomatal conductance of Yaupon and Arborvitae which were evergreen and conifer. Despite the 
decreased response of plants at some treatment levels (e.g. Arbovitae, Yaupon),gs values were representative values for 
both large and small open stomata.  
Even If gson the lower leaf surface were to be reflected, regulated gsvalues still fell within the expected range (e.g. 
0.02-0.12 mol H2O m-2s-1  for trees) but not for Roughleaf dogwood after exposure at high treatment level (0.01 mol 
H2O m-2s-1).  

 

Transpiration rate (E) after exposure to NH3treatment levels showed either an increased or decreased 
response of plants (Figure 7a, b, c). Transpiration rate values were low at 0.8 mmolm-2s-1 if photosynthetic photon 
flux density (PPFD) or light energy for plants was low although it can gradually increase if PPFD became medium (2.5 
mmolm-2s-1) and high (5 mmolm-2s-1). Interactions of species vs. treatment levels and species vs. exposure yielded 
significant statistical difference (p<0.0001) on transpiration rate of plants but not on all three factors (p=0.07).  

 

Usually, increased E values are dictated by absence of water stress in the plants and decreased E when water 
supplies in intercellular surfaces are limited (Raghavendra, 1991). In this study, the amount of water vapor delivered 
into the leaf’s intercellular surface was controlled. Despite lower E values per unit of leaf surface for loblolly pine than 
broad-leaf species, E values per seedlings of similar plant size was greater for pine because of its greater total leaf 
surface area (Kramer, 2012) but this was not observed in one out of three conifers used in this experiment. Eastern 
red cedar constantly resulted in decreased E values at all treatment levels of NH3(9.50 to 2.97 mmolm-2s-1).  However, 
the response was opposite for the American holly plants.  A leaf with greater surface area transpires more water 
compared to plants with less surface area; however, leaf structure and stomatal aperture also determine the amount of 
water that escapes from the plant (Devlin, 1975) which could be another factor that caused American holly’s E values 
to increase.  In general, the control on ΔE rests with stomata and the function of stomatal closure highly influenced E 
status especially by mid-day when stomata closed as a response to increasing temperature. In a study on two species of 
olive trees, Lo Bianco and Avellone (2014) observed E values ranging from 0.3 to 1.6 mmolm-2s-1throughout the 
sampling duration (08:00-19:00 hours) with peak measurements at noon in Biancolillaspecies. Cerasuola species was 
observed with 0.3 to 1.2 mmolm-2s-1E values but had a different peak time (13:30 hour). However, since light intensity 
was taken into account to play a major role in plants E,an established  photo synthetically active radiation (PAR) of 
1200 µmol m2s1 was set constant and applied for all the gas-exchange measurements on all plants. Even if the 
response was inconsistent for Arizona cypress and Arborvitae, results showed higher E values than high PPFD at 5 
mmolm-2s-1, specifically for Arizona cypress as reflected at all treatment levels.  
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Figure 6. Comparison of stomatal conductance of six plant species measured using LiCOR 6400 prior to and 
after exposure to NH3 at (a) low, (b) medium, and (c) high treatment levels. Error bars represent standard 
errors. 
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Figure 7. Comparison of transpiration rate of six plant species measured using LiCOR 6400 prior to and 
after exposure to NH3 at (a) low, (b) medium, and (c) high treatment levels. Error bars represent standard 
errors. 
 

4. Conclusion 
 

Based on NH3 assimilation, Eastern red cedar can assimilate NH3 better than the other five species of 
Arizona cypress, American holly, Roughleaf dogwood, Arborvitae and Yaupon that were used in this study.  
Therefore, considering only the foliar uptake, Eastern red cedar will be the best option for shelterbelt design to 
remove NH3 emitted from confined animal buildings.  
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Exposure to NH3 significantly lowered the net photosynthetic rates of the three plants analyzed with higher 
NH3 content (Eastern red cedar, Arizona cypress and American holly). Yet, all values were still within the range 
expected for conifers (2 - 17 µmol CO2 m-2s-1) and evergreen plants (3 - 22 µmol CO2 m-2s-1). Therefore, 
photosynthetic rate, which is essential to plant metabolism (Fitter&Hay,2002), will not be limited. Exposure to NH3 
caused increased stomatal conductance and transpiration rate on American holly and Arizona cypress. In dry and 
drought conditions and when NH3 concentration is elevated, both plants will be at risk for higher potential for water 
loss as water relations will be altered and recovery from water loss will be difficult.  Therefore, under these conditions, 
American holly and Arizona cypress will not be good choices for a shelterbelt to control NH3 emissions from animal 
facilities. 
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