Effectiveness of Plant Species for Removing Atmospheric Ammonia
Abstract
Six plant species of Yaupon, Eastern red cedar, American holly, Arizona cypress, Arborvitae and Roughleaf dogwood were utilized to determine their effectiveness in the removal of atmospheric ammonia. All species were exposed to three ammonia levels (1, 5 and 10 ppm) in an environmental chamber. Foliar ammonia content was quantified using an enzymatic technique. The effects of exposure to ammonia on the physiological responses (e.g. photosynthetic activity, stomatal conductance, and transpiration rate) of plants in ambient condition were also determined using an open design photosynthetic gas exchange system. Foliar ammonia content was significantly different among the six plant species (p<0.0001) with Eastern red cedar exhibiting the highest content. The physiological responses differed significantly depending on the plant species and the ammonia treatment level. The photosynthetic response of plants to the presence of ammonia was mixed. At low exposure level, all species except Arborvitae had decreased photosynthetic activity, reducing by as much as 44.5% for Yaupon. At the highest concentration, however, Yaupon’s photosynthetic activity improved by about 10%. Exposure to ammonia caused increased stomatal conductance and transpiration rate on American holly and Arizona cypress, making them more susceptible to water loss.
Full Text: PDF DOI: 10.15640/jaes.v8n1a1
Abstract
Six plant species of Yaupon, Eastern red cedar, American holly, Arizona cypress, Arborvitae and Roughleaf dogwood were utilized to determine their effectiveness in the removal of atmospheric ammonia. All species were exposed to three ammonia levels (1, 5 and 10 ppm) in an environmental chamber. Foliar ammonia content was quantified using an enzymatic technique. The effects of exposure to ammonia on the physiological responses (e.g. photosynthetic activity, stomatal conductance, and transpiration rate) of plants in ambient condition were also determined using an open design photosynthetic gas exchange system. Foliar ammonia content was significantly different among the six plant species (p<0.0001) with Eastern red cedar exhibiting the highest content. The physiological responses differed significantly depending on the plant species and the ammonia treatment level. The photosynthetic response of plants to the presence of ammonia was mixed. At low exposure level, all species except Arborvitae had decreased photosynthetic activity, reducing by as much as 44.5% for Yaupon. At the highest concentration, however, Yaupon’s photosynthetic activity improved by about 10%. Exposure to ammonia caused increased stomatal conductance and transpiration rate on American holly and Arizona cypress, making them more susceptible to water loss.
Full Text: PDF DOI: 10.15640/jaes.v8n1a1
Browse Journals
Journal Policies
Information
Useful Links
- Call for Papers
- Submit Your Paper
- Publish in Your Native Language
- Subscribe the Journal
- Frequently Asked Questions
- Contact the Executive Editor
- Recommend this Journal to Librarian
- View the Current Issue
- View the Previous Issues
- Recommend this Journal to Friends
- Recommend a Special Issue
- Comment on the Journal
- Publish the Conference Proceedings
Latest Activities
Resources
Visiting Status
Today | 129 |
Yesterday | 338 |
This Month | 6568 |
Last Month | 11781 |
All Days | 1773008 |
Online | 105 |